# Warm-up: write the questions and answers

- 1. Describe how the cell membrane helps maintain homeostasis?
- 2. What is the purpose of carbohydrates on the cell membrane?
- 3. How is the cell membrane selectively permeable?
- 4. What is the function of a transport protein?

## Warm-up: Answers

- 1. Describe how the cell membrane helps maintain homeostasis?
  - Controls what goes into and leaves the cell (i.e. controls the environment)
- 2. What is the purpose of carbohydrates on the cell membrane? Identifiers
- 3. How is the cell membrane selectively permeable? Only lets certain (small, uncharged) molecules in and out
- 4. What is the function of a transport protein?
  - Help large molecules get into or out of the cell

## Exit Ticket from yesterday...

### Movement Across a Cell Membrane

- Regulate movement of liquid on one side of the membrane to the liquid on the other side
- Substances naturally move from higher to lower concentrations

Concentration = <u>mass of solute (substance being dissolved)</u> volume of solvent (substance doing the dissolving)

# Two Types of Movement:

| Passive Transport                                                                                                                            | Active Transport                                                                              |
|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Does NOT require energy (ATP)                                                                                                                | Requires energy (ATP)                                                                         |
| <ul> <li>Types:</li> <li>1. Simple Diffusion</li> <li>2. Osmosis - water</li> <li>3. Facilitated Diffusion – uses protein channel</li> </ul> | Types:<br>1. Pumps<br>2. Endocytosis<br>3. Exocytosis                                         |
| Moves from <b>HIGH</b> to <b>LOW</b><br>concentrations (with/along/down<br>concentration gradient)                                           | Moves from <b>LOW</b> to<br><b>HIGH</b> concentrations<br>(against concentration<br>gradient) |

## Passive Transport: Diffusion

- Particles move constantly, collide, and spread out randomly
- Move from areas of HIGHER concentration to areas of LOWER concentration





#### EQUILIBRIUM

## Passive Transport: <u>Osmosis</u>

- Diffusion of <u>water</u> across a selectively permeable membrane
- Remember water passes freely across the membrane



## Effects of Osmosis on a Cell

- Isotonic concentration of solutes is the same inside and outside of the cell
- Hypertonic solution has a higher solute concentration than in the cell
- Hypotonic solution has a lower solute concentration than in the cell





## **Osmotic Pressure**

- Must balance intake and loss of water in order to survive
- Osmosis exerts pressure on hypertonic side of membrane
  - Cell is filled with salts, sugars, proteins
     So, will be hypotonic to fresh water
    - = net movement of water into a cell







## **Cell Membrane Poster**

- With a partner
- Must include:
  - Title
  - Lipids, surface proteins, transport proteins, and carbs (all in the correct location)
  - Function of cell membrane
  - Function of each part of the membrane
  - Your names!