BIOTECH: DNA FINGERPRINTING

How can you see an individuals DNA Profile or 'Fingerprint'?

- Special type of enzymes called Restriction Enzymes
 - Cut the DNA at <u>specific</u> locations
- Cutting the DNA results in fragments
- All fragments are not the same length
- Everyone's DNA is different, so they cut at different locations, producing different size fragments

Restriction Enzymes are Specific!

- E.g. EcoR1 (a restriction enzyme) would only cut at the DNA sequence GAATTC
- So, it would find that short sequence in the DNA and cut wherever it appeared

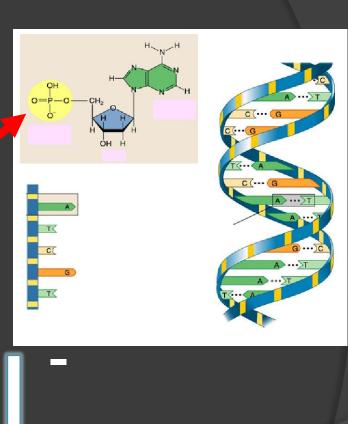
So, we've made millions of copies of DNA...what now?

VISUALIZE THE DNA PROFILE!!!

How??

Electrophoresis

Electrophoresis


 Charged molecules are driven through a solid matrix (gel) by an electrical current

- "-" charged particles travel toward cathode (+)
- "+" charged particles travel toward anode (-)
- Separation is based on molecular size (and shape)

Electrophoresis of DNA

 DNA is negatively charged due to the phosphate groups in backbone of the helix

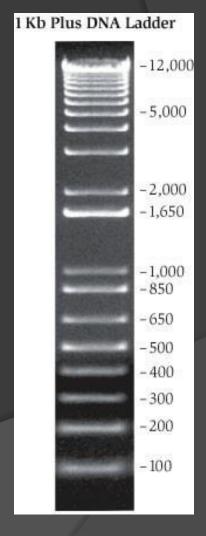
Will migrate toward positive electrode

Electrophoresis of DNA

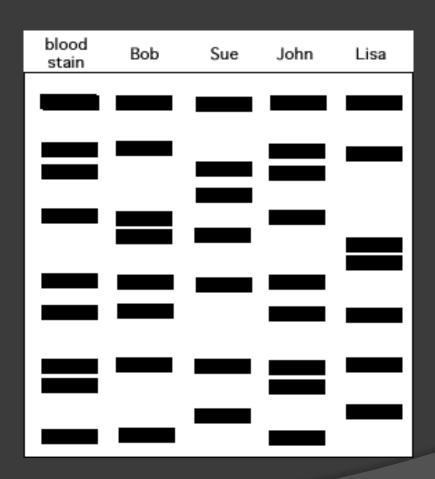
Using <u>agarose</u> gels

Electrophoresis of DNA

- Add "loading dye" to the samples
 - E.g. Bromophenol Blue
- 3 purposes of loading dye:
 - 1. Helps sample sink into the wells
 - 2. Allows you to visualize the sample
 - 3. Tells you when to stop the current (dye front)


Visualizing DNA

- Stain the gels (DNA)
 - Use Ethidium Bromide Strong mutagen!
 - Intercalates between basepairs in the DNA
 - fluoresces under UV light



How do you tell sizes of fragments?

- Run a sample with fragments of known size
 - =Marker lane, Ladder etc.

DNA Fingerprint

Example Gel

 Restriction enzyme BamH1 cuts at GGAATCC

- Individual #1 GGAATCCGTAGG
- Individual #2 AGCTACGGAATCCAG