Warm-up:

- 1. Diffusion moves substances from _____ ____ concentration.
- 2. Diffusion moves _____ a concentration gradient.
- 3. The U-shaped tube in the figure below is divided by a membrane that is impermeable to starch but permeable to water. In what direction will water move?

to

Warm-up:

- 1. Diffusion moves substances from <u>HIGH</u> to <u>LOW</u> concentration.
- 2. Diffusion moves <u>ALONG/DOWN/WITH</u> a concentration gradient.
- 3. The U-shaped tube in the figure below is divided by a membrane that is impermeable to starch but permeable to water. In what direction will water move?
 From left to right

Special Types of Transport

Facilitated Diffusion

- Movement of specific molecules across membranes through protein channels
- Fast and specific

Facilitated Diffusion

Still Diffusion – must be a HIGH to LOW concentration gradient

- Does NOT require energy
 - E.g. Red Blood Cells have a special glucose protein channel that allows glucose to easily pass through the membrane

Active Transport

- Substances moving AGAINST the concentration gradient
 - i.e. from LOW to HIGH concentration
 - REQUIRES ENERGY!!!!

Active Transport

Occurs by two mechanisms:
 1. Transport proteins or pumps

 Small molecules or ions

 Endocytosis/Exocytosis
 Large molecules or clumps

Active Transport by Protein Pumps

E.g. Sodium-Potassium Pump

Active Transport by Endo/Exocytosis

 Endocytosis – taking material into the cell by pockets of membrane

- E.g.
 - Phagocytosis
 - Pinocytosis
- Exocytosis process by which cell release large material
 - E.g.

Removal of water by contractile vacuole

Vander/ Sherman/ Luciano Human Physiology, 7th edition. Copyright © 1998 McGraw-Hill Companies, Inc. All Rights Reserved.

Endocytosis and Exocytosis

https://concord.org/stemresources/diffusion-osmosis-and-activetransport

Describe the type of transport represented by each molecule

